Table I. Angular Independent Shift Contributions $\vartheta_{0}(\beta)$.
Rotational Barriers V_{2}, and Equilibrium Conformations $\theta_{(1)}$ of complexes $1 \mathbf{a}-\mathrm{j}$ from -60 to +130

Compound	- $\mathrm{CHR}^{1} \mathrm{R}^{2}$	$\vartheta_{0}(\beta),$ ppm	$\begin{gathered} V_{2}, \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$\begin{gathered} \theta_{0} . \\ \text { deg } \end{gathered}$
1a	$-\mathrm{CH}_{3}$	15.5	0	60 ± 2
1b	$-\mathrm{CH}_{2} \mathrm{CH}_{3}$	17 ± 3	2.5 ± 0.3	60 ± 2
1c	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	14.5 ± 4	3.7 ± 0.5	60 ± 2
1d	$-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	13.5 ± 2	3.2 ± 0.3	$60=2$
1 e	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	20 ± 2	3.2 ± 0.3	60 t 2
1 f	$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	15.5 ± 5	4.1 ± 0.3	$68-3$
1g		$12.5=4$	2.3 ± 0.2	69 ± 3
1h		11 ± 5	3.7 ± 0.2	72 ± 2
1 i	$-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{2} \mathrm{H}_{3}$	$13.5=3$	$4.2=0.2$	76 ± 2
1j	$-\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)_{2}$	13.5 ± 2	4.5 ± 0.3	83 ± 3

2 p orbital, eq $2 .{ }^{6}$ Formula 2 illustrates the structural situation, looking from C^{α} toward C^{c} and the nickel. The expec-

$$
\begin{gather*}
\vartheta(\beta)=\vartheta_{0}(\beta)+\vartheta_{2}(\beta)\left\langle\cos ^{2} \theta\right\rangle \tag{2}\\
\left\langle\cos ^{2} \theta\right\rangle=\int \cos ^{2} \theta \cdot e^{-V(\theta) / R T} \mathrm{~d} \theta / \int e^{-V(\theta) / R T} \mathrm{~d} \theta \tag{3}\\
V(\theta)=V_{2} \sin ^{2}\left(\theta-\theta_{0}\right) \tag{4}
\end{gather*}
$$

tation value $\left\langle\cos ^{2} \theta\right\rangle$ may be computed classically by eq 3 yielding the same result as the quantum mechanical procedure. ${ }^{7}$ Assuming the $\sin ^{2}$ potential energy function ${ }^{8}$ of eq 4 , we compute a theoretical temperature dependence which is shown as the heavy trace through the β-shifts in Figure 1. The parameters used in these calculations have been collected in Table I; additionally, $\vartheta_{2}(\beta)$ in eq 2 equals -200 $(\pm 20) \mathrm{ppm}$ for all complexes. The specified error limits indicate which variations of one parameter may be canceled by suitable changes of the others.

One of the two conformations of lowest energy for 1a-e is depicted in formula 2 with each $\mathrm{C}^{\circ \times} \mathrm{H}^{\beta}$ bond at $\theta_{0}=60^{\circ}$. Rotations by $\pm 90^{\circ}$ will produce the energy maxima with C^{B} in the chelate plane. This picture agrees perfectly with an $a b$ initio calculation ${ }^{10}$ for ethylbenzene which should be a good model for $\mathbf{1 b}$. The computed ${ }^{10}$ barrier of $2.2 \mathrm{kcal} / \mathrm{mol}$ compares well with 1b in Table I. Conformation 2 is also supported by dibenzy11 as a model for 1 e as well as by esr ${ }^{12}$ and vibration spectroscopy. ${ }^{13}$ The vanishing barrier to methyl rotation ${ }^{14}$ in 1a shows up as a totally temperatureinvariant shift $\vartheta(\beta)$.

The parameters for sec-alkyl groups in $\mathbf{1 f}$-j were derived by assuming two barriers at $\theta=0$ or 180°, i.e., when the single β-hydrogen eclipses the 2 p orbital. The equilibrium angles θ_{0} in Table I, resulting from a slight modification of eq 4 , compare well with esr results ${ }^{12 b}$ on isopropylbenzene (64°), cyclopentylbenzene $\left\langle 66^{\circ}\right.$), and cyclohexylbenzene $\left(74^{\circ}\right)$. The barrier of $3.9 \mathrm{kcal} / \mathrm{mol}$ computed for cyclohexylbenzene ${ }^{15}$ agrees with that of $\mathbf{1 h}$. It is also evident from Table I that cyclopentyl ${ }^{16}$ and ethyl ${ }^{17}$ groups rotate much easier than isopropyl ${ }^{16,17}$ and cyclohexyl. ${ }^{16}$

Our $\vartheta_{0} / \vartheta_{2}$ ratio of -0.08 is to be compared with theoretical ratios of $-0.03^{6 \mathrm{~b}, \mathrm{~d}, \mathrm{e}}$ or $+0.03^{6 \mathrm{c}}$ or +0.055 . ${ }^{6 f}$ A recent experimental estimation ${ }^{18}$ was between -0.02 and -0.06 .

Dipolar shifts ${ }^{2}$ will not contribute to the overwhelming part $\left(\vartheta_{2}\right)$ of our β-shifts if the rotation axis $C^{\circ} \mathrm{C}^{\mathrm{c}}$ of the β hydrogens coincides with the magnetic axis of $\mathbf{1}$.

Acknowledgment. Support by the Stiftung Volkswagenwerk and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References and Notes

(1) A few related complexes have been investigated previously: (a) J. E. Parks and R. H. Holm, Inorg. Chem., 7, 1408 (1968); (b) S. G. McGeachin, Can. J. Chem., 46, 1903 (1968); (c) C. P. Richards and G. A. Webb, J. Inorg. Nucl. Chem., 31, 3459 (1969); (d) C. L. Honeybourne and G. A. Webb, Chem. Phys. Lett., 2, 426 (1968); Mol. Phys., 17, 17 (1969).
(2) G. N. LaMar, W. DeW. Horrocks, and R. H. Holm, "NMR of Paramagnetic Molecules," Academic Press, New York and London, 1973.
(3) Magnetic moments of 3.1-3.2 BM were found whenever checked for chelates of type 1 at various temperatures, yielding an effective \bar{g} value of 2.20 .
(4) For various explanations of non-Curie behavior see: (a) J. P. Jesson, J. Chem. Phys., 47, 579 (1967); (b) R. J. Kurland and B. R. McGarvey, J. Magn. Reson., 2, 286 (1970); (c) R. H. Holm and M. J. O'Connor, Progr. Inorg. Chem., 14, 241 (1971); (d) W. D. Perry and R. S. Drago, J. Amer. Chem. Soc., 93, 2183 (1971); (e) B. R. McGarvey, ibid. 94, 1103 (1972).
(5) C. L. Honeybourne, Inorg. Nucl. Chem. Lett., 7, 1121 (1971).
(6) (a) C. Heller and H. M. McConnell, J. Chem. Phys., 32, 1535 (1960); (b) J. P. Colpa and E. DeBoer, Mol. Phys., 7, 333 (1964); (c) J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys., 47, 2026 (1967); (d) T. Yonezawa, H. Nakatsuji, T. Kawamura, and H. Kato, Bull. Chem. Soc. Jpn., 42, 2437 (1969); J. Chem. Phys., 51, 669 (1969); (e) Y. Ellinger, A. Rassat, R. Subra, G. Berthier, and P. Millie, Chem. Phys. Lett., 11, 362 (1971); (f) F. C. Adam and F. W. King, J. Chem. Phys., 58, 2446 (1973).
(7) (a) E. W. Stone and A. H. Maki, J. Chem. Phys., 37, 1326 (1962); 38, 1254 (1963); (b) R. W. Fessenden, J. Chim. Phys., 61, 1570 (1964); (c) N. L. Bauld, J. D. McDermed, C. E. Hudson, Y. S. Rim, J. Zoeller, R. D. Gordon, and J. S. Hyde, J. Amer. Chem. Soc., 91, 6666 (1969); (d) P. J. Krusic, P. Meakin, and J. P. Jesson, J. Phys. Chem., 75, 3438 (1971); (e) P. J. Krusic and J. K. Kochi, J. Amer. Chem. Soc., 93, 846 (1971).
(8) This is the dominant ${ }^{9}$ term with $n=2$ in the general formula $V(\theta)=$ $0.5 \Sigma_{n} V_{n}(1-\cos n \theta)$.
(9) J. P. Lowe, Progr. Phys. Org. Chem., 6, 1 (1968)
(10) W. J. Hehre, L. Radom, and J. A. Pople, J. Amer. Chem. Soc., 94, 1496 (1972).
(11) (a) V. F. Bereznitskaya, A. I. Kitaigorodskii, V. M. Kozhin, I. E. Kozlova, and K. V. Mirskaya, Russ. J. Phys. Chem., 46, 1431 (1972); (b) K. K. Chiu, H. H. Huang, and L. H. L. Chia, J. Chem. Soc., Perkin Trans. 2, 286 (1972)
(12) (a) A. Carrington and P. F. Todd, Mol. Phys., 8, 299 (1964); (b) F. Gerson, G. Moshuk, and M. Schwyzer, Helv. Chim. Acta, 54, 361 (1971).
(13) (a) R. K. Harris and M. Thorley, J. Mol. Spectrosc., 42, 407 (1972); (b) L. Verdonck, G. P. Van der Kelen, and Z. Eeckhaut, Spectrochim. Acta, Part A, 29, 813 (1973).
(14) Compare toluene: (a) H. D. Rudolph, H. Dreizler, A. Jaeschke, and P. Windling, Z. Naturforsch. A, 22, 940 (1967); (b) A. P. Dempster, D. B. Powell, and N. Sheppard, Spectrochim. Acta, Part A, 28, 373 (1972).
(15) N. L. Allinger and M. T. Tribble, Tetrahedron Lett., 3259 (1971).
(16) A. Mannschreck and L. Ernst, Chem. Ber., 104, 228 (1971).
(17) M. D. Sevilla and G. Vincow, J. Phys. Chem., 72, 3647 (1968).
(18) L. M. Stock and M. R. Wasielewski, J. Amer. Chem. Soc., 95, $274^{\prime} 3$ (1973).

Rudolf Knorr,* Heinz Polzer, Edith Bischler
Institute of Organic Chemistry, University of Munich
8 Munich 2, Germany
Received November 2, 1974

Conformational Analysis by Spin Transmission into Rotating and Rigid Phenyl Groups

Sir:
The Curie law is generally valid for nickel complexes of the chelate type 1.' Therefore, the previously ${ }^{\prime}$ defined re-

la, $X=H$
b, $\mathrm{X}=\mathrm{C}_{2} \mathrm{H}_{5}$
c, $\mathrm{X}=n^{-} \mathrm{C}_{3} \mathrm{H}_{\text {; }}$
d. $\mathrm{X}=\mathrm{OC}_{2} \mathrm{H}_{5}$

Figure 1. Isotropic reduced shifts ϑ of $\mathbf{1 a}$ as a function of temperature.

Table I. Parameters of Angular Dependent $\left(\vartheta_{2}\right)$ and Independent $\left(\vartheta_{0}\right)$ Shift Contributions from -50 to $+140^{\circ}$

Com- pound	$\vartheta_{0}(2-\mathrm{H})$ $(\pm 1 \mathrm{ppm})$	$\vartheta_{2}(2-\mathrm{H})$ $(\pm 3 \mathrm{ppm})$	$\vartheta_{0}(4-\mathrm{H})$ $(\pm 0.5 \mathrm{ppm})$	$\vartheta_{2}(4-\mathrm{H})$ $(\pm 2 \mathrm{ppm})$
$\mathbf{1 a}$	4.65	18.0	1.95	17.0
$\mathbf{1 b}$	5.0	18.0	2.35	17.0
$\mathbf{1 c}$	5.25	18.0	2.65	17.0
$\mathbf{1 d}$	5.55	17.5	2.55	17.0

duced ${ }^{1} \mathrm{H} \mathrm{nmr}$ shifts ${ }^{2} \vartheta_{i}$ of $\mathbf{1 a - d}$ should be independent of the temperature. Figure 1 exemplifies this expectation for the meta and para protons of the anilino groups in 1a. Simultaneously, $\vartheta(2-\mathrm{H})$ and $\vartheta(4-\mathrm{H})$ of the phenyl group attached to C^{c} in $\mathbf{1}$ decrease with increasing temperature. We ascribe this apparent deviation from the Curie law to thermally excited phenyl rotation.

Transmission of positive spin density (as measured by ϑ_{i}) from the 2 p orbital at C^{c} of the chelate ring ${ }^{1}$ into the phenyl group is a function of the interplanar angle θ and presumably described by eq $1 .{ }^{3}$ We approximate the rotational po-

$$
\begin{gather*}
\vartheta=\vartheta_{0}+\vartheta_{2}\left\langle\cos ^{2} \theta\right\rangle \tag{1}\\
V(\theta)=V_{2} \sin ^{2}\left(\frac{\theta-\theta_{0}}{90^{0}-\theta_{0}} 90^{\circ}\right) \tag{2}
\end{gather*}
$$

tential energy function by eq 2 with a minimum at θ_{0} and a barrier, V_{2}, in the perpendicular conformation (no conjugation). Theoretical shifts ϑ were computed as previously described ' and drawn as the heavy traces through the experimental 2-and 4 -hydrogen shifts in Figure 1. Table I shows the parameters of eq 1 which produce such traces in combination with $V_{2}=1.3(\pm 0.2) \mathrm{kcal} / \mathrm{mol}$ and $\theta_{0}=5\left(\pm 5^{\circ}\right)$. The specified uncertainties indicate which variations of one parameter may be balanced by suitable modifications of the others.

Our $\vartheta_{0} / \vartheta_{2}$ pattern and the weak angular dependence of $\vartheta(3-\mathrm{H})$ (compare Figure 1) agree reasonably well with INDO calculations ${ }^{4}$ on the twisting benzyl radical. Since the frequent assumption ${ }^{5}$ of a very small ϑ_{0} in eq 1 is not borne out here, we searched for independent support as follows. Lack of temperature dependence of any shift ϑ in 2 and 3 is consistent with perpendicularly locked phenyl groups ($\cos ^{2} 90^{\circ}=0$). Accordingly, $\vartheta(2-\mathrm{H})$ and $\vartheta(4-\mathrm{H})$ in $\mathbf{2 / 3}$ have dropped rather closely to ϑ_{0} alt hough some spin density might survive in the π-system. ${ }^{6}$ This shift pattern deviates from the relative coupling constants of most radicals with reportedly twisted aryl groups. $4 \mathrm{~b}, \mathrm{c}, 7$

On the other hand, the shifts (slightly extrapolated

Figure 2. Apparent interplanar angles $\langle\theta\rangle$ (degrees) for $\mathbf{1 a}$ as a function of temperature.

toward $0^{\circ} \mathrm{K}$) denoted in formula 4 for the almost coplanar ${ }^{8}$ $\left(\cos ^{2} \theta=1\right)$ phenyl group agree perfectly with $\vartheta_{0}+\vartheta_{2}$ from Table I.
Theoretical calculations ${ }^{9}$ on biphenyl as a model for $\mathbf{1}$ locate a highest barrier (experimentally unknown) ${ }^{10}$ of 2-4 $\mathrm{kcal} / \mathrm{mol}$ either at $\theta=90^{\circ} 5 \mathrm{sa-e}$ or at $\theta=0^{\circ} .{ }^{5 \mathrm{a}, f, \mathrm{~g}}$ Computed equilibrium angles θ_{0} of about 40° contrast with experimental estimates ${ }^{\prime \prime}$ from 0 to 45°. However, eq 1 and 2 imply that angles θ_{0} around 45° would cause temperature independent shifts for 1. Apparent interplanar angles $\langle\theta\rangle$ may be calculated by eq 1 from the experimental shifts ϑ of $\mathbf{1 a}$ together with ϑ_{0} and ϑ_{2} from Table I. Figure 2 demonstrates this powerful method of conformational analysis. If 1a is indeed comparable to biphenyl, our $\langle\theta\rangle$ values might indicate thermally averaged angles in some literature estimates.

Acknowledgment. This work was kindly supported by the Deutsche Forschungsgemeinschaft and the Stiftung Volkswagenwerk.

References and Notes

(1) R. Knorr, H. Polzer, and E. Bischler, J. Amer. Chem. Soc., preceding communication.
(2) Measured in 1,2-dideuterio-1,1,2,2-tetrachloroethane relative to the free ligands.
(3) G. N. LaMar, W. DeW. Horrocks, and R. H. Holm, ''NMR of Paramagnetic Molecules," Academic Press New York and London, 1973, p 116.
(4) (a) J. A. Pople and D. L. Beveridge, J. Chem. Phys., 49, 4725 (1968); (b) A. Calder, A. R. Forrester, J. W. Emsley, G. R. Luckhurst, and R. A. Storey, Mol. Phys., 18, 481 (1970); (c) W. J. Van den Hoek, B. A. C. Rousseeuw, J. Smidt, W. G. B. Huysmans, and W. J. Mijs, Chem. Phys. Lett., 13, 429 (1972).
(5) For ${ }^{\top} \mathrm{H}$ coupling constants: (a) M. S. Davis, K. Morokuma, and R. W Kreilick, J. Amer. Chem. Soc., 94, 5588 (1972); (b) R. Biehl, K. P. Dinse, K. Möbius, M. Plato, H. Kurreck, and U. Mennenga, Tetrahedron, 29, 363 (1973); (c) P. Ashworth and W. T. Dixon, J. Chern. Soc., Perkin Trans. 2, 1533 (1973). For ${ }^{13} \mathrm{C}$ coupling constants: (d) A. Berndt, Tetrahedron Lett., 5439 (1968); (e) H. R. Falle, G. R. Luckhurst. A. Horsfield, and M. Ballester, J. Chem. Phys., 50, 258 (1969).
(6) For a good model with $\theta_{0}=83.5^{\circ}$ see: A. Camerman, L. H. Jensen, and A. T. Balaban, Acta Crystallogr., Sect. B, 25, 2623 (1969).
(7) (a) M. D. Sevilla and G. Vincow, J. Phys. Chem., 72, 3641 (1968), and references cited therein; (b) L. Lunazzi, A. Mangini, G. Placucci, C. Vincenzi, and I. Degani, Mol. Phys., 19, 543 (1970); (c) L. Lunazzi, A. Mangini, G. Placucci, and C. Vincenzi, J. Chem. Soc., Perkin Trans. 1, 2418 (1972); (d) K. Schreiner and A. Berndt, Angew. Chem., 86, 131 (1974); Angew. Chem., Int. Ed. Engl., 13, 144 (1974).
(8) Compare similarly bridged biphenyls: (a) C. A. Bear, D. Hall, J. M. Waters, and T. N. Waters, J. Chem. Soc., Perkin Trans. 2, 314 (1973); (b)
M. Iwaizumi, T. Matsuzaki, and T. Isobe, Bull. Chem. Soc. Jpn., 45, 1030 (1972); (c) F. C. Adam, Can. J. Chem., 49, 3524 (1971).
(9) (a) T. H. Goodwin and D. A. Morton-Blake, Theor. Chim. Acta, 1, 458 (1963); (b) I. Fischer-Hjalmars, Tetrahedron, 19, 1805 (1963); (c) A. Imamura and R. Hoffmann, J. Amer. Chem. Soc., 90, 5379 (1968); (d) G. Casalone, C. Mariani, A. Mugnoli, and M. Simonetta, Mol. Phys., 15, 339 (1968); (e) D. Perahia and A. Pullman, Chem. Phvs. Lett., 19, 73 (1973); (f) A. Golebiewski and A. Parczewski, Z. Naturforsch. A, 25, 1710 (1970); (g) N. L. Allinger and J. T. Sprague, J. Amer. Chem. Soc., 95, 3893 (1973).
(10) J. P. Lowe, Progr. Phys. Org. Chem., 6, 1 (1968).
(11) A. d'Annibale, L. Lunazzi, A. C. Boicelli, and D. Macciantelli, J. Chem. Soc., Perkin Trans. 2, 1396 (1973), and references cited therein.

Rudolf Knorr,* Alfons Weiss Heinz Polzer, Edith Bischler
Institute of Organic Chemistry, University of Munich 8 Munich 2, Germany
Received November 2, 1974

Carbanions. XV. Tight and Loose Ion Pairs in Rearrangements of Organoalkali Compounds ${ }^{\mathbf{1}}$

Sir:

Whereas 2,2,3-triphenylpropyllithium (A), prepared from reaction of 1 -chloro-2,2,3-triphenylpropane with lithium at -65 to -75°, has been reported ${ }^{2}$ to rearrange in tetrahydrofuran (THF) at 0° with at least 98% 1,2-migration of benzyl, we now find that reaction of the same chloride with cesium in THF at 65° gives 96% 1,2-migration of phenyl rather than benzyl. In order better to understand the phenomena responsible for such diverse migratory aptitudes, the rearrangement has been studied under widely variable conditions as reported in Table I. Previous work ${ }^{3}$ has indicated (see Scheme I) that benzyl migration proceeds by elimination of benzyl anion and readdition of this anion to 1,1 -diphenylethene to give B (path I) while aryl migration proceeds intramolecularly via a spiro anion to C (path II). In the present work 1,1-diphenylethyl anion (D) has been identified; indeed D is a major product under strongly reducing conditions with solutions ${ }^{4}$ of alkali metals (e.g., potassium plus 18 -crown-6 in THF). It is reasonable to suppose that this anion results from reduction of intermediate 1,1 -diphenylethylene. The appearance of D along with benzyl anion ${ }^{5}$ constitutes additional evidence for the occurrence of path I.

Scheme I

Examination of Table I reveals that 2,2,3-triphenylpropyllithium does not rearrange at an appreciable rate upon standing in the THF at -75°, even upon addition of 18 -crown-6 ether; ${ }^{6}$ however, sodium tert-butoxide or better potassium and cesium tert-butoxides are effective catalysts, with the product being notably dependent upon the cation present. For a related rearrangement, lithium tert-butoxide, unlike potassium or cesium tert-butoxides was an ineffective catalyst. ${ }^{7}$ These pronounced cation effects suggest that the cation plays an important role in determining the fate of the anion and imply that the cation must be geometrically close to the anion during the rearrangement process. This could be understood, for example, if the rearrangement catalyzed by cesium tert-butoxide took place in the corresponding organocesium compound; therefore, the following metathetical reaction appears to occur under our conditions

$$
\mathrm{PhCH}_{-} \mathrm{CPh}_{-} \mathrm{CH}_{2} \mathrm{Li}+\mathrm{MO}-t-\mathrm{Bu} \underset{\mathrm{PhCH}_{2} \mathrm{CPhCH}_{-} \mathrm{M}}{\longrightarrow}+\mathrm{LiO}-t \cdot \mathrm{Bu}
$$

Additional evidence (see Table I) for this metathesis comes from the similar ratio (equal within likely experimental errors) of products of path I to path II observed for the reaction of cesium metal with the chloride at -75° as compared to the reaction of cesium tert-butoxide with the organolithium compound at the same temperature.

Table I. Rearrangements of 2,2,3-Triphenylpropyl Alkali Metal Compounds

Conditions	Temp, ${ }^{\circ} \mathrm{C}$	-_-_Products, ${ }^{\alpha}$ rel mol \% - -			
		A	B	C	D
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Li}, 7 \mathrm{hr}$, THF	-75	100	0	0	0
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Li}+2$ (18-crown-6), 3.3 hr , THF	-75	100	0	0	0
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Li}, 30 \mathrm{~min}$, THF	0	0	100	0	0
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Li}, 3 \mathrm{hr}, \mathrm{Et}_{2} \mathrm{O}$	+35	0	0	100	0
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Li}+2 \mathrm{NaO}-\%$ - $\mathrm{Bu}, 30 \mathrm{~min}$, THF	-75	33	58	0	9
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Li}+2 \mathrm{KO}-t-\mathrm{Bu}, 30 \mathrm{~min}, \mathrm{THF}$	-75	0	63	37	0
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Li}+2 \mathrm{CsO}-t-\mathrm{Bu}, 30 \mathrm{~min}, \mathrm{THF}$	-75	0	25	72	3
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Li}+2 \mathrm{KO}-7-\mathrm{Bu}+2(18$-crown-6), $30 \mathrm{~min}, \mathrm{THF}$	-75	0	100	0	0
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Li}+2 \mathrm{CsO}-t$ - $\mathrm{Bu}+2(18$-crown-6), 30 min , THF	-75	20^{b}	77	0	3
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{K}, \mathrm{THF}$	$+65$	0	10	90	0
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, Cs, THF	+65	0	2	96	2
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{Cs},{ }^{c}$ THF	-75	0	5	67	28
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Cl}+2(18$-crown-6), excess K, THF	-75		2	0	98
$\mathrm{PhCH}_{2} \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{Cl}+2\left(18\right.$-crown-6), excess $\mathrm{Cs},{ }^{\text {c }}$ THF	-75	0	0	<8	$>92^{d}$

[^0]
[^0]: "Yields are based only on acidic products from carbonation; the entry " 0 " $\%$ means that none was detected by the nner and glpc techniques used and therefore less than 1 or 2% was present. The reaction is apparently retarded by precipitation of a cesium tert-butoxide complex with the 18 -crown- $6 .{ }^{\circ}$ The organoalkali product was treated with excess mercury to lower activity of cesium (destruction of radical anions) prior to carbonation, ${ }^{d}$ The measured ratio of C : D was $8: 92$ in this run; however, since the ratio of $C 5: 18$-crown-6 was $1.15: 1$ and the adventitious presence of an impurity caused most of the cesium to react, it is thought that the yield of C would have been reduced if an excess of 18 -crown- 6 over cesium had been present.

